JXNVCE ALGO-LOG YouJin Jung

GFG-SUBSET-SUM

Using DP instead of Recursion

 2D array of size (arr.size() + 1) * (target + 1) of type boolean
 => True if exists

Example Scenario

set[]={3, 4, 5, 2}
target=6
 
    0    1    2    3    4    5    6

0   T    F    F    F    F    F    F

3   T    F    F    T    F    F    F
     
4   T    F    F    T    T    F    F   
      
5   T    F    F    T    T    T    F

2   T    F    T    T    T    T    T
#include <iostream>
using namespace std;

bool isSubsetSum(int set[], int n, int sum) {
    // The value of subset[i][j] will be true if
    // there is a subset of set[0..j-1] with sum
    // equal to i
    bool subset[n + 1][sum + 1];
 
    // If sum is 0, then answer is true
    for (int i = 0; i <= n; i++)
        subset[i][0] = true;
 
    // If sum is not 0 and set is empty,
    // then answer is false
    for (int i = 1; i <= sum; i++)
        subset[0][i] = false;
 
    // Fill the subset table in bottom up manner
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= sum; j++) {
            if (j < set[i - 1])
                subset[i][j] = subset[i - 1][j];
            if (j >= set[i - 1])
                subset[i][j] = subset[i - 1][j]
                               || subset[i - 1][j - set[i - 1]];
        }
    }

     for (int i = 0; i <= n; i++) {
       for (int j = 0; j <= sum; j++)
          printf ("%4d", subset[i][j]);
       printf("\n");
     }
 
    return subset[n][sum];
}

int main() {
    int set[] = { 3, 34, 4, 12, 5, 2 };
    int sum = 9;
    int n = sizeof(set) / sizeof(set[0]);
    if (isSubsetSum(set, n, sum) == true)
        printf("Found a subset with given sum");
    else
        printf("No subset with given sum");
    return 0;
}