GFG-SUBSET-SUM
14 Oct 2021Using DP
instead of Recursion
2D array of size (arr.size() + 1) * (target + 1) of type boolean
=> True if exists
Example Scenario
set[]={3, 4, 5, 2}
target=6
0 1 2 3 4 5 6
0 T F F F F F F
3 T F F T F F F
4 T F F T T F F
5 T F F T T T F
2 T F T T T T T
#include <iostream>
using namespace std;
bool isSubsetSum(int set[], int n, int sum) {
// The value of subset[i][j] will be true if
// there is a subset of set[0..j-1] with sum
// equal to i
bool subset[n + 1][sum + 1];
// If sum is 0, then answer is true
for (int i = 0; i <= n; i++)
subset[i][0] = true;
// If sum is not 0 and set is empty,
// then answer is false
for (int i = 1; i <= sum; i++)
subset[0][i] = false;
// Fill the subset table in bottom up manner
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (j < set[i - 1])
subset[i][j] = subset[i - 1][j];
if (j >= set[i - 1])
subset[i][j] = subset[i - 1][j]
|| subset[i - 1][j - set[i - 1]];
}
}
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++)
printf ("%4d", subset[i][j]);
printf("\n");
}
return subset[n][sum];
}
int main() {
int set[] = { 3, 34, 4, 12, 5, 2 };
int sum = 9;
int n = sizeof(set) / sizeof(set[0]);
if (isSubsetSum(set, n, sum) == true)
printf("Found a subset with given sum");
else
printf("No subset with given sum");
return 0;
}